Vector Geometry Review

Vector Basics - Sections 12.1 and 12.2 Vectors, Components and Representation Vectors, Scalar Multiplication Vectors, Addition Vectors, Magnitude Vectors, Basis

Dot and Cross Products - Sections 12.3 and 12.4 Vectors, The Dot Product Vectors, The Cross Product

Lines and Planes - Sections 12.2 and 12.5 Lines in 3-Space Planes in Space

1 Vector Basics - Sections 12.1 and 12.2

Joseph Phillip Brennan Jila Niknejad

Vectors

A **vector** is a geometric object that has <u>magnitude</u> (length) and <u>direction</u>. A **scalar** is a constant in \mathbb{R} which has <u>no direction</u>, <u>only magnitude</u>. Familiar examples of vectors: force, velocity, acceleration, pressure, flux

A vector can be represented geometrically by an arrow AB from A (the initial point) to B (the terminal point). Notation: $\vec{v} = \vec{v} = \overrightarrow{AB}$.

Translating a vector does **not** change it, since the magnitude and direction remain the same.

These three arrows all represent the same vector!

Cartesian Representation of Vectors

- Draw a vector \vec{v} with its *initial point* at the origin *O*.
- The **components** of \vec{v} are the coordinates of the *terminal point P*.

Here $\vec{v} = \overrightarrow{OP} = \langle a, b, c \rangle$. In general, if $\vec{v} = \overrightarrow{AB}$ where $A = (x_1, y_1, z_1)$ and $B = (x_2, y_2, z_2)$ then $\vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.

Scalar Multiplication

- Multiplying a vector \vec{v} by a positive scalar c does not change its direction, but multiplies its magnitude by c.
- If c < 0, the direction of v is reversed and the magnitude is multiplied by |c|.
- Two nonzero vectors \vec{v} and \vec{w} are **parallel** if they are scalar multiples of each other (there exists a scalar *c* such that $\vec{v} = c\vec{w}$).

Addition and Subtraction of Vectors

 Geometrically, adding two vectors can be visualized in terms of a parallelogram.

Vector Magnitude

The **magnitude** (or **length**) of a vector \vec{v} is the distance between its initial point and terminal point:

If
$$\vec{v} = \overrightarrow{AB}$$
 with $A = (x_1, y_1, z_1)$ and $B = (x_2, y_2, z_2)$, then
 $\|\vec{v}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

(Note: This is just the usual distance formula.)

Special Vectors

• The <u>zero vector</u> is $\vec{0} = \langle 0, 0 \rangle$ or $\langle 0, 0, 0 \rangle$.

The zero vector is the **only** vector with magnitude zero. Its direction is undefined.

- Standard basis vectors in $\mathbb{R}^2:~\vec{i}=\langle 1,0\rangle$ and $\vec{j}=\langle 0,1\rangle$
- <u>Standard basis vectors</u> in \mathbb{R}^3 : $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$

• A <u>unit vector</u> is a vector of magnitude one.

Unit vectors useful for specifying directions without magnitudes. A unit vector in the direction of a given vector can be obtained by multiplying the vector by reciprocal of the magnitude. $\vec{u} = \frac{1}{\|\vec{v}\|}\vec{v}$ The unit vector in direction $\langle 3, 4 \rangle$ is $\langle \frac{3}{5}, \frac{4}{5} \rangle$.

Cartesian Coordinates in \mathbb{R}^2 and \mathbb{R}^3

Coordinates represent geometric objects in space by ordered pairs/triples of numbers, so that we can study them with algebra and calculus

- Reference point: the origin O
- Two coordinate axes
- One plane
- Four quadrants

- Reference point: the origin O
- Three coordinate axes
- Three coordinate planes
- Eight octants

2 Dot and Cross Products - Sections 12.3 and 12.4

Joseph Phillip Brennan Jila Niknejad

Dot and Cross Products

In addition to vector addition and scalar multiplication, there are two other important operations on vectors.

1. The **dot product**, which takes two vectors \vec{v} and \vec{w} (either <u>both in \mathbb{R}^2 </u> or <u>both in \mathbb{R}^3 </u>) and produces a *scalar* $\vec{v} \cdot \vec{w}$.

2. The **cross product**, which takes two vectors \vec{v} and \vec{w} (both in \mathbb{R}^3) and produces a vector $\vec{v} \times \vec{w}$.

It is very important to understand the **geometry** behind the dot and cross product, not just their formulas.

The Dot Product

The **dot product** of two vectors $\vec{v} = \langle a_1, b_1, c_1 \rangle$ and $\vec{w} = \langle a_2, b_2, c_2 \rangle$ is the scalar

 $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = \|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\| \cos(\theta)$

where θ is the angle between the vectors \vec{v} and \vec{w} .

- If θ is acute $(0 \le \theta < \frac{\pi}{2})$ then $\vec{v} \cdot \vec{w} > 0$.
- If \vec{v}, \vec{w} are orthogonal $(\theta = \frac{\pi}{2})$ then $\vec{v} \cdot \vec{w} = 0$.
- If θ is obtuse $\left(\frac{\pi}{2} < \theta \leq \pi\right)$ then $\vec{v} \cdot \vec{w} < 0$.

• The angle between
$$\vec{v}$$
 and \vec{w} is $\arccos\left(\frac{\vec{v}\cdot\vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right)$

The Formula for the Dot Product

Formula in \mathbb{R}^2 : $\vec{v} \cdot \vec{w} = a_1 a_2 + b_1 b_2$ Formula in \mathbb{R}^3 : $\vec{v} \cdot \vec{w} = a_1 a_2 + b_1 b_2 + c_1 c_2$

 $\begin{aligned} \mathbf{a_1} &= \|\vec{\mathbf{v}}\| \cos(\theta_1) \qquad \mathbf{b_1} = \|\vec{\mathbf{v}}\| \sin(\theta_1) \\ \mathbf{a_2} &= \|\vec{\mathbf{w}}\| \cos(\theta_2) \qquad \mathbf{b_2} = \|\vec{\mathbf{w}}\| \sin(\theta_2) \end{aligned}$

 $\begin{aligned} \mathbf{a}_1 \mathbf{a}_2 + \mathbf{b}_1 \mathbf{b}_2 &= \|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\| \left(\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)\right) \\ &= \|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\| \cos(\theta_2 - \theta_1) \\ &= \|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\| \cos(\theta) \\ &= \vec{\mathbf{v}} \cdot \vec{\mathbf{w}}. \end{aligned}$

The Cross Product

The cross product of vectors \vec{v}, \vec{w} in \mathbb{R}^3 is the vector

 $ec{\mathsf{v}} imes ec{\mathsf{w}} = \left(\|ec{\mathsf{v}}\| \|ec{\mathsf{w}}\| \ \mathsf{sin}(heta)
ight) ec{\mathsf{n}}$

where:

- (i) θ is the angle between \vec{v} and \vec{w} ;
- (ii) \vec{n} is the <u>unit</u> vector perpendicular to both \vec{v} and \vec{w} , given by the Right-Hand Rule.

(Point the fingers of your right hand toward \vec{v} and then curl them toward $\vec{w}.$ Your thumb will point in the direction of $\vec{n}.)$

$$\vec{i} \times \vec{j} = \vec{k}$$
 $\vec{j} \times \vec{k} = \vec{i}$ $\vec{k} \times \vec{i} = \vec{j}$

Properties of the Cross Product

- If \vec{v} and \vec{w} are parallel, then $\vec{v} \times \vec{w} = \vec{0}$.
- $(\vec{v} \times \vec{w}) \perp \vec{v}$ and $(\vec{v} \times \vec{w}) \perp \vec{w}$.
- $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$.
- $\|\vec{v} \times \vec{w}\|$ is the area of the parallelogram with sides \vec{v} and \vec{w} .

To calculate the cross product of two vectors in ℝ², treat them as vectors in ℝ³:

$$\vec{v} = \langle v_1, v_2 \rangle = \langle v_1, v_2, 0 \rangle$$
 $\vec{w} = \langle w_1, w_2 \rangle = \langle w_1, w_2, 0 \rangle$

In this case $\vec{v} \times \vec{w}$ will always be a multiple of $\vec{k} = \langle 0, 0, 1 \rangle$.

Calculating Cross Products with Determinants

The determinant of a 2 × 2 matrix is det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
.
 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

The determinant of a 3×3 matrix can be calculated by decomposing into a linear combination of 2×2 matrices.

 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$

Cross Product Formula:

$$ec{v} imes ec{w} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{bmatrix}$$

3 Lines and Planes - Sections 12.2 and 12.5

Joseph Phillip Brennan Jila Niknejad

Lines in 2-Space (Review)

A line in \mathbb{R}^2 is the set of points satisfying a linear equation in x and y.

Point-slope form: The line through (x_0, y_0) with slope *m* is defined by

$$y-y_0=m(x-x_0).$$

 $\frac{\text{Slope-intercept form:}}{\text{by}}$ The line with slope *m* and *y*-intercept *b* is defined

$$y = mx + b$$
.

(Exception: A vertical line has undefined slope and cannot be written in either of these forms; its equation is x = a.)

Lines in 2-Space: Vector Forms

A line can also be represented using a <u>direction vector</u>. The idea: specify a **point on the line** and a <u>direction to move in</u>.

- The line $y = -\frac{x}{2} + 5$ has slope $m = -\frac{1}{2}$.
- When the x-value changes by +2, the y-value changes by -1.
- That is, the line is parallel to the vector $\vec{v} = \langle 2, -1 \rangle$.

Lines in 2-Space: Parametrization

Every line *L* in \mathbb{R}^2 has a **direction vector** \vec{v} :

- For any two points P, Q on L, the vector \overrightarrow{PQ} is parallel to \vec{v} .
- That is, there is a scalar t such that $\overrightarrow{PQ} = t\vec{v}$.
- Every nonzero multiple of \vec{v} is also a direction vector for L.
- If *P* is a point on *L*, then the line can be described by the function

 $\vec{\mathsf{r}}(t)=\vec{\mathsf{r}}_P+t\vec{\mathsf{v}}.$

("Start at *P*, and then change your position by $t\vec{v}$.")

L has many parametrizations, depending on the choices of P and v.
 (P is the starting point, t is time, v is velocity.)

Lines in 3-Space

Lines in \mathbb{R}^3 can be parametrized exactly the same as lines in \mathbb{R}^2 . In \mathbb{R}^3 , a line is still determined by a point and a <u>direction</u>.

Equations of a Line in 3-Space

Let *L* be a line in \mathbb{R}^3 , with direction vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$, containing a point $P_0 = (x_0, y_0, z_0)$.

Vector form $\vec{r} - \vec{r}_0 = t\vec{v}$ for all t $\vec{r}(t) = \langle x_0 + tv_1, y_0 + tv_2, z_0 + tv_3 \rangle$

Parametric form $x = x_0 + tv_1, y = y_0 + tv_2, z = z_0 + tv_3$

These two forms are more or less the same. The name of the parameter t does not matter.

Symmetric form $\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$ (provided $v_1, v_2, v_3 \neq 0$)

This form consists of <u>two</u> equations on x, y, z, with no parameter.

Lines in \mathbb{R}^3 : Examples

Example 1: Find equations for the line through point P = (2, 3, 4) parallel to $\vec{v} = \langle 5, 6, 7 \rangle$.

Solution:

Vector form $\vec{r}(t) = \langle 2+5t, 3+6t, 4+7t \rangle$ Parametric formx = 2+5ty = 3+6tz = 4+7tSymmetric form $\frac{x-2}{5} = \frac{y-3}{6} = \frac{z-4}{7}$

Lines in \mathbb{R}^3 : Examples

Example 2: Find a vector form of the line through P = (2, 3, 5) and Q = (4, 2, 1).

Solution: The first step is to find a direction vector. Use \overrightarrow{PQ} .

$$\overrightarrow{PQ} = \langle 4-2, 2-3, 1-5 \rangle = \langle 2, -1, -4 \rangle.$$

Therefore, a vector form of the line is

$$\vec{\mathbf{r}}(t) = \langle \mathbf{2} + 2t, \, \mathbf{3} - t, \, \mathbf{5} - 4t \rangle.$$

Using the direction vector $\overrightarrow{QP} = \langle -2, 1, 4 \rangle$ and the point P would give

$$\vec{s}(t) = \langle 2-2t, 3+t, 5+4t \rangle$$

and starting at Q instead of P would give

$$\vec{\mathsf{q}}(t) = \langle 4-2t, 2+t, 1+4t \rangle.$$

Relative Position of Two Lines in Space

- Two lines can be parallel. Direction vectors for parallel lines are scalar multiples of each other.
- Two non-parallel lines can intersect at a point.
- Two lines can be <u>skew</u>. Skew lines are not parallel and do not intersect.

▶ Link

Video

Example 3: The two lines L_1 and L_2 given by the equations \checkmark video

$$\begin{array}{lll} L_1: & x=3-2t & y=1+t & z=4-3t \\ L_2: & x=-5+t & y=4-t & z=1+6t \end{array}$$

have direction vectors $\vec{v}_1 = \langle -2, 1, -3 \rangle$ and $\vec{v}_2 = \langle 1, -1, 6 \rangle$, which are not scalar multiples — so L_1 and L_2 are not parallel. Do they intersect?

Relative Position of Two Lines in Space

Example 3 (continued):

To check if they intersect, solve the system of equations $\vec{r}_1(t) = \vec{r}_2(s)$:

- $\begin{cases} 3-2t = -5+s \\ 1+t = 4-s \\ 4-3t = 1+6s \end{cases}$ (Be sure to change the name of one of the parameters, since they refer to different lines!)
- Solution: t = 5, s = -2.
- Lines L_1 and L_2 intersect at $\vec{r}_1(5) = \vec{r}_2(-2) = (-7, 6, -11)$.
- If the system has no solution, then the lines are skew.

Planes in Space

If a line in \mathbb{R}^3 is defined by <u>two</u> linear equations (in its symmetric form), what kind of set is defined by <u>one</u> linear equation? **A plane.**

Question: How do we translate between the algebraic equation of a plane and its geometric properties?

Equations for Planes

 $\begin{array}{l} P_0(x_0, y_0, z_0): \text{ point in } \mathbb{R}^3\\ \vec{r}_0 = \langle x_0, y_0, z_0 \rangle\\ \vec{n} = \langle n_1, n_2, n_3 \rangle: \text{ nonzero vector} \end{array}$

Then there is a unique plane F that passes through P_0 and is orthogonal to \vec{n} .

Let P(x, y, z) be a general point on the plane F and let $\vec{r} = \langle x, y, z \rangle$.

Vector equation of F $\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$ Scalar equation of F $n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0$

The vector \vec{n} is called a <u>normal vector</u> to *F*. Any nonzero multiple of \vec{n} is also a normal vector to *F*.

Equations for Planes: Examples

Example 4: Find equations for the plane containing the point (7, -8, 5) with normal vector (i) $\vec{n} = \langle -2, 1, 4 \rangle$; (ii) $\vec{n} = \langle -2, 0, 4 \rangle$; (iii) $\vec{n} = \langle 0, 0, 3 \rangle$.

Solution:

(i)

 $\begin{array}{l} \langle -2,1,4\rangle \cdot \langle x-7,\,y+8,\,z-5\rangle = 0 \\ \text{or} \quad -2(x-7)+(y+8)+4(z-5)=0 \\ \text{or} \quad -2x+y+4z=-2 \end{array}$

(ii)
$$\langle -2, 0, 4 \rangle \cdot \langle x - 7, y + 8, z - 5 \rangle = 0$$

or $-2(x - 7) + 4(z - 5) = 0$
or $-2x + 4z = 6$

(iii)
$$\langle 0, 0, 3 \rangle \cdot \langle x - 7, y + 8, z - 5 \rangle = 0$$

or $3(z - 5) = 0$

Equations for Planes: Examples

Example 5: Find an equation through the plane F containing the three points A(1, -2, 0), B(3, 1, 4), C(2, 1, -2).

Solution: Geometrically, three points certainly determine a plane. So we need a normal vector.

- The vectors $\overrightarrow{AB} = \langle 2, 3, 4 \rangle$ and $\overrightarrow{AC} = \langle 1, 3, -2 \rangle$ both lie in F.
- The normal vector \vec{n} needs to be orthogonal to both \overrightarrow{AB} and \overrightarrow{AC} .
- Thus, we can use the cross product $\overrightarrow{AB} \times \overrightarrow{AC} = \langle -18, 8, 3 \rangle$ for \vec{n} .

One solution: $\left| -18(x-1) + 8(y+2) + 3z = 0. \right|$

There are other possibilities: -18(x-3) + 8(y-1) + 3(z-4) = 0, etc.

Relative Position of Two Planes in Space

- Two planes are <u>parallel</u> exactly when their normal vectors are scalar multiples of one another.
- If two planes are not parallel, then they intersect.
 - When two planes intersect, their intersection is a line.
 - The angle θ between two planes is the angle between their normal vectors (at most π/2). If θ= 0 then the planes are parallel.

Relative Position of Two Planes in Space

Example 6: Determine the line *L* of intersection of the planes F_1 and F_2 whose equations are

$$F_1: 2x - 3y + 5z = 1,$$
 $F_2: 3x - 4y = 7.$

Solution: Normal vectors for the planes: $\vec{n}_1 = \langle 2, -3, 5 \rangle$, $\vec{n}_2 = \langle 3, -4, 0 \rangle$.

Since L lies in both planes, its direction \vec{v} is orthogonal to both $\vec{n_1}$ and $\vec{n_2}$:

$$\vec{v} = \vec{n}_1 \times \vec{n}_2 = \langle 20, 15, 1 \rangle.$$

Solve the system 2x - 3y + 5z = 1, 3x - 4y = 7 to get a point on *L*. There are many solutions; one is (17, 11, 0).

Answer:

$$ert \vec{r}(t) = \langle 17 + 20t, \ 11 + 15t, \ t \rangle.$$

