Vector Geometry Review

Vector Basics - Sections 12.1 and 12.2

Vectors, Components and Representation
Vectors, Scalar Multiplication
Vectors, Addition
Vectors, Magnitude
Vectors, Basis
Dot and Cross Products - Sections 12.3 and 12.4
Vectors, The Dot Product
Vectors, The Cross Product
Lines and Planes - Sections 12.2 and 12.5
Lines in 3-Space
Planes in Space

1 Vector Basics - Sections 12.1 and 12.2

Vectors

A vector is a geometric object that has magnitude (length) and direction. A scalar is a constant in \mathbb{R} which has no direction, only magnitude.

Familiar examples of vectors: force, velocity, acceleration, pressure, flux
A vector can be represented geometrically by an arrow $A B$ from A (the initial point) to B (the terminal point). Notation: $\vec{v}=\vec{v}=\overrightarrow{A B}$.

Translating a vector does not change it, since the magnitude and direction remain the same.

These three arrows all represent the same vector!

Cartesian Representation of Vectors

- Draw a vector \vec{v} with its initial point at the origin O.
- The components of \vec{v} are the coordinates of the terminal point P.

Here $\vec{v}=\overrightarrow{O P}=\langle a, b, c\rangle$.
In general, if $\vec{v}=\overrightarrow{A B}$ where $A=\left(x_{1}, y_{1}, z_{1}\right)$ and $B=\left(x_{2}, y_{2}, z_{2}\right)$ then

$$
\vec{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle .
$$

Scalar Multiplication

- Multiplying a vector \vec{v} by a positive scalar c does not change its direction, but multiplies its magnitude by c.
- If $c<0$, the direction of \vec{v} is reversed and the magnitude is multiplied by $|c|$.
- Two nonzero vectors \vec{v} and \vec{w} are parallel if they are scalar multiples of each other (there exists a scalar c such that $\vec{v}=c \vec{w}$).

Addition and Subtraction of Vectors

- Algebraically, two vectors can be added or subtracted by adding or subtracting their components.

$$
\langle a, b\rangle \pm\langle c, d\rangle \stackrel{2 d}{=}\langle a \pm c, b \pm d\rangle \mid\langle a, b, c\rangle \pm\langle p, d, q\rangle=\langle a \pm p, b \pm d, c \pm q\rangle
$$

- Geometrically, adding two vectors can be visualized in terms of a parallelogram.

Vector Magnitude

The magnitude (or length) of a vector \vec{v} is the distance between its initial point and terminal point:

$$
\begin{aligned}
& \vec{v}=\langle a, b\rangle \quad\|\vec{v}\|=\sqrt{a^{2}+b^{2}} \\
& \overrightarrow{\mathrm{w}}=\langle a, b, c\rangle \quad\|\overrightarrow{\mathrm{w}}\|=\sqrt{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

If $\overrightarrow{\mathrm{v}}=\overrightarrow{A B}$ with $A=\left(x_{1}, y_{1}, z_{1}\right)$ and $B=\left(x_{2}, y_{2}, z_{2}\right)$, then

$$
\|\overrightarrow{\mathrm{v}}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

(Note: This is just the usual distance formula.)

Special Vectors

- The zero vector is $\overrightarrow{0}=\langle 0,0\rangle$ or $\langle 0,0,0\rangle$.

The zero vector is the only vector with magnitude zero. Its direction is undefined.

- Standard basis vectors in $\mathbb{R}^{2}: \vec{i}=\langle 1,0\rangle$ and $\vec{j}=\langle 0,1\rangle$
- Standard basis vectors in $\mathbb{R}^{3}: \vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle$, $\vec{k}=\langle 0,0,1\rangle$

- A unit vector is a vector of magnitude one.

Unit vectors useful for specifying directions without magnitudes. A unit vector in the direction of a given vector can be obtained by multiplying the vector by reciprocal of the magnitude. $\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}$ The unit vector in direction $\langle 3,4\rangle$ is $\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.

Cartesian Coordinates in \mathbb{R}^{2} and \mathbb{R}^{3}

Coordinates represent geometric objects in space by ordered pairs/triples of numbers, so that we can study them with algebra and calculus

- Reference point: the origin O
- Two coordinate axes
- One plane
- Four quadrants

- Reference point: the origin O
- Three coordinate axes
- Three coordinate planes
- Eight octants

2 Dot and Cross Products - Sections 12.3 and 12.4

Dot and Cross Products

In addition to vector addition and scalar multiplication, there are two other important operations on vectors.

1. The dot product, which takes two vectors \vec{v} and \vec{w} (either both in \mathbb{R}^{2} or both in \mathbb{R}^{3}) and produces a scalar $\vec{v} \cdot \vec{w}$.
2. The cross product, which takes two vectors \vec{v} and \vec{w} (both in \mathbb{R}^{3}) and produces a vector $\vec{v} \times \vec{w}$.

It is very important to understand the geometry behind the dot and cross product, not just their formulas.

The Dot Product

The dot product of two vectors $\vec{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos (\theta)
$$

where θ is the angle between the vectors \vec{v} and \vec{w}.

- If θ is acute $\left(0 \leq \theta<\frac{\pi}{2}\right)$ then $\vec{v} \cdot \vec{w}>0$.
- If \vec{v}, \vec{w} are orthogonal $\left(\theta=\frac{\pi}{2}\right)$ then $\vec{v} \cdot \vec{w}=0$.
- If θ is obtuse $\left(\frac{\pi}{2}<\theta \leq \pi\right)$ then $\vec{v} \cdot \vec{w}<0$.
- The angle between \vec{v} and \vec{w} is $\arccos \left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right)$.

The Formula for the Dot Product

Formula in $\mathbb{R}^{2}: \quad \vec{v} \cdot \vec{w}=a_{1} a_{2}+b_{1} b_{2}$
Formula in $\mathbb{R}^{3}: \vec{v} \cdot \vec{w}=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$

$$
\begin{array}{ll}
a_{1}=\|\vec{v}\| \cos \left(\theta_{1}\right) & b_{1}=\|\vec{v}\| \sin \left(\theta_{1}\right) \\
a_{2}=\|\vec{w}\| \cos \left(\theta_{2}\right) & b_{2}=\|\vec{w}\| \sin \left(\theta_{2}\right)
\end{array}
$$

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2} & =\|\vec{v}\|\|\vec{w}\|\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right) \\
& =\|\vec{v}\|\|\vec{w}\| \cos \left(\theta_{2}-\theta_{1}\right) \\
& =\|\vec{v}\|\|\vec{w}\| \cos (\theta) \\
& =\vec{v} \cdot \vec{w}
\end{aligned}
$$

The Cross Product

The cross product of vectors \vec{v}, \vec{w} in \mathbb{R}^{3} is the vector
where:
(i) θ is the angle between \vec{v} and \vec{w};
(ii) \vec{n} is the unit vector perpendicular to both \vec{v} and $\overrightarrow{\mathrm{w}}$, given by the Right-Hand Rule.
(Point the fingers of your right hand toward \vec{v} and then curl them toward $\overrightarrow{\mathrm{w}}$. Your thumb will point in the direction of \vec{n}.)

$$
\vec{v} \times \vec{w}=(\|\vec{v}\|\|\vec{w}\| \sin (\theta)) \vec{n}
$$

$\vec{i} \times \vec{j}=\vec{k}$
$\vec{j} \times \vec{k}=\vec{i}$
$\vec{k} \times \vec{i}=\vec{j}$

Properties of the Cross Product

- If \vec{v} and \vec{w} are parallel, then $\vec{v} \times \vec{w}=\overrightarrow{0}$.
- $(\vec{v} \times \vec{w}) \perp \vec{v}$ and $(\vec{v} \times \vec{w}) \perp \vec{w}$.
- $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$.
- $\|\vec{v} \times \vec{w}\|$ is the area of the parallelogram with sides \vec{v} and \vec{w}.

- To calculate the cross product of two vectors in \mathbb{R}^{2}, treat them as vectors in \mathbb{R}^{3} :

$$
\vec{v}=\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{1}, v_{2}, 0\right\rangle
$$

$$
\vec{w}=\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{1}, w_{2}, 0\right\rangle
$$

In this case $\vec{v} \times \vec{w}$ will always be a multiple of $\vec{k}=\langle 0,0,1\rangle$.

Calculating Cross Products with Determinants

The determinant of a 2×2 matrix is $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.

$$
\left.\begin{array}{ll}
a & b \\
c & d
\end{array} \right\rvert\,=a d-b c
$$

The determinant of a 3×3 matrix can be calculated by decomposing into a linear combination of 2×2 matrices.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

Cross Product Formula: $\quad \vec{v} \times \vec{w}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$

3 Lines and Planes - Sections 12.2 and 12.5

Lines in 2-Space (Review)

A line in \mathbb{R}^{2} is the set of points satisfying a linear equation in x and y.

Point-slope form: The line through $\left(x_{0}, y_{0}\right)$ with slope m is defined by

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

Slope-intercept form: The line with slope m and y-intercept b is defined by

$$
y=m x+b
$$

(Exception: A vertical line has undefined slope and cannot be written in either of these forms; its equation is $x=a$.)

Lines in 2-Space: Vector Forms

A line can also be represented using a direction vector. The idea: specify a point on the line and a direction to move in.

$$
k<\triangleleft D \gg 1 \rightarrow++
$$

- The line $y=-\frac{x}{2}+5$ has slope $m=-\frac{1}{2}$.
- When the x-value changes by +2 , the y-value changes by -1 .
- That is, the line is parallel to the vector $\vec{v}=\langle 2,-1\rangle$.

Lines in 2-Space: Parametrization

Every line L in \mathbb{R}^{2} has a direction vector $\overrightarrow{\mathrm{V}}$:

- For any two points P, Q on L, the vector $\overrightarrow{P Q}$ is parallel to \vec{v}.
- That is, there is a scalar t such that $\overrightarrow{P Q}=t \overrightarrow{\mathrm{v}}$.
- Every nonzero multiple of \vec{v} is also a direction vector for L.
- If P is a point on L, then the line can be described by the function

$$
\vec{r}(t)=\vec{r}_{P}+t \vec{v} .
$$

("Start at P, and then change your position by $t \overrightarrow{\mathrm{v}}$.")

- L has many parametrizations, depending on the choices of P and \vec{v}. (P is the starting point, t is time, \vec{v} is velocity.)

Lines in 3-Space

Lines in \mathbb{R}^{3} can be parametrized exactly the same as lines in \mathbb{R}^{2}. In \mathbb{R}^{3}, a line is still determined by a point and a direction.

Equations of a Line in 3-Space

Let L be a line in \mathbb{R}^{3}, with direction vector $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, containing a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$.

Vector form

$$
\begin{aligned}
& \vec{r}-\vec{r}_{0}=t \vec{v} \text { for all } t \\
& \vec{r}(t)=\left\langle x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right\rangle
\end{aligned}
$$

Parametric form

$$
x=x_{0}+t v_{1}, y=y_{0}+t v_{2}, z=z_{0}+t v_{3}
$$

These two forms are more or less the same.
The name of the parameter t does not matter.
Symmetric form

$$
\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}} \quad\left(\text { provided } v_{1}, v_{2}, v_{3} \neq 0\right)
$$

This form consists of two equations on x, y, z, with no parameter.

Lines in \mathbb{R}^{3} : Examples

Example 1: Find equations for the line through point $P=(2,3,4)$ parallel to $\vec{v}=\langle 5,6,7\rangle$.

Solution:
Vector form

$$
\vec{r}(t)=\langle 2+5 t, 3+6 t, 4+7 t\rangle
$$

Parametric form

$$
x=2+5 t \quad y=3+6 t \quad z=4+7 t
$$

Symmetric form

$$
\frac{x-2}{5}=\frac{y-3}{6}=\frac{z-4}{7}
$$

Lines in \mathbb{R}^{3} : Examples

Example 2: Find a vector form of the line through $P=(2,3,5)$ and $Q=(4,2,1)$.

Solution: The first step is to find a direction vector. Use $\overrightarrow{P Q}$.

$$
\overrightarrow{P Q}=\langle 4-2,2-3,1-5\rangle=\langle 2,-1,-4\rangle .
$$

Therefore, a vector form of the line is

$$
\vec{r}(t)=\langle 2+2 t, 3-t, 5-4 t\rangle .
$$

Using the direction vector $\overrightarrow{Q P}=\langle-2,1,4\rangle$ and the point P would give

$$
\vec{s}(t)=\langle 2-2 t, 3+t, 5+4 t\rangle
$$

and starting at Q instead of P would give

$$
\vec{q}(t)=\langle 4-2 t, 2+t, 1+4 t\rangle .
$$

Relative Position of Two Lines in Space

- Two lines can be parallel. Direction vectors for parallel lines are scalar multiples of each other.
- Two non-parallel lines can intersect at a point.
- Two lines can be skew. Skew lines are not parallel and do not intersect.

Example 3: The two lines L_{1} and L_{2} given by the equations

$$
\begin{array}{llll}
L_{1}: & x=3-2 t & y=1+t & z=4-3 t \\
L_{2}: & x=-5+t & y=4-t & z=1+6 t
\end{array}
$$

have direction vectors $\overrightarrow{\mathrm{v}}_{1}=\langle-2,1,-3\rangle$ and $\overrightarrow{\mathrm{v}}_{2}=\langle 1,-1,6\rangle$, which are not scalar multiples - so L_{1} and L_{2} are not parallel. Do they intersect?

Relative Position of Two Lines in Space

Example 3 (continued):

$$
\begin{array}{ll}
L_{1}: & \vec{r}_{1}(t)=\langle 3,1,4\rangle+t\langle-2,1,-3\rangle \\
L_{2}: & \vec{r}_{2}(t)=\langle-5,4,1\rangle+t\langle 1,-1,6\rangle
\end{array}
$$

To check if they intersect, solve the system of equations $\vec{r}_{1}(t)=\vec{r}_{2}(s)$:

$$
\left\{\begin{array}{cl}
3-2 t & =-5+s \\
1+t & =4-s \\
4-3 t & =1+6 s
\end{array}\right.
$$

(Be sure to change the name of one of the parameters, since they refer to different lines!)

- Solution: $t=5, s=-2$.
- Lines L_{1} and L_{2} intersect at $\vec{r}_{1}(5)=\vec{r}_{2}(-2)=(-7,6,-11)$.
- If the system has no solution, then the lines are skew.

Planes in Space

If a line in \mathbb{R}^{3} is defined by two linear equations (in its symmetric form), what kind of set is defined by one linear equation? A plane.

Question: How do we translate between the algebraic equation of a plane and its geometric properties?

Equations for Planes

$P_{0}\left(x_{0}, y_{0}, z_{0}\right):$ point in \mathbb{R}^{3}
$\vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$
$\overrightarrow{\mathrm{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$: nonzero vector

Then there is a unique plane F that passes through P_{0} and is orthogonal to \vec{n}.

Let $P(x, y, z)$ be a general point on the plane F and let $\vec{r}=\langle x, y, z\rangle$.

$$
\begin{array}{ll}
\text { Vector equation of } F & \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
\text { Scalar equation of } F & n_{1}\left(x-x_{0}\right)+n_{2}\left(y-y_{0}\right)+n_{3}\left(z-z_{0}\right)=0
\end{array}
$$

The vector \vec{n} is called a normal vector to F.
Any nonzero multiple of \vec{n} is also a normal vector to F.

Equations for Planes: Examples

Example 4: Find equations for the plane containing the point $(7,-8,5)$ with normal vector (i) $\vec{n}=\langle-2,1,4\rangle$; (ii) $\vec{n}=\langle-2,0,4\rangle$; (iii) $\vec{n}=\langle 0,0,3\rangle$.

Solution:

(i)

$$
\begin{array}{lr}
& \langle-2,1,4\rangle \cdot\langle x-7, y+8, z-5\rangle=0 \\
\text { or } & -2(x-7)+(y+8)+4(z-5)=0 \\
\text { or } & -2 x+y+4 z=-2
\end{array}
$$

(ii)

$$
\begin{aligned}
\langle-2,0,4\rangle \cdot\langle x-7, y+8, z-5\rangle & =0 \\
-2(x-7)+4(z-5) & =0 \\
-2 x+4 z & =6
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\langle 0,0,3\rangle \cdot\langle x-7, y+8, z-5\rangle & =0 \\
3(z-5) & =0 \\
z & =5
\end{aligned}
$$

Equations for Planes: Examples

Example 5: Find an equation through the plane F containing the three points $A(1,-2,0), B(3,1,4), C(2,1,-2)$.

Solution: Geometrically, three points certainly determine a plane. So we need a normal vector.

- The vectors $\overrightarrow{A B}=\langle 2,3,4\rangle$ and $\overrightarrow{A C}=\langle 1,3,-2\rangle$ both lie in F.
- The normal vector \vec{n} needs to be orthogonal to both $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
- Thus, we can use the cross product $\overrightarrow{A B} \times \overrightarrow{A C}=\langle-18,8,3\rangle$ for \vec{n}.

One solution: $-18(x-1)+8(y+2)+3 z=0$.
There are other possibilities: $-18(x-3)+8(y-1)+3(z-4)=0$, etc.

Relative Position of Two Planes in Space

- Two planes are parallel exactly when their normal vectors are scalar multiples of one another.
- If two planes are not parallel, then they intersect.
- When two planes intersect, their intersection is a line.
- The angle θ between two planes is the angle between their normal vectors (at most $\pi / 2$). If $\theta=0$ then the planes are parallel.

Relative Position of Two Planes in Space

Example 6: Determine the line L of intersection of the planes F_{1} and F_{2} whose equations are

$$
F_{1}: \quad 2 x-3 y+5 z=1, \quad F_{2}: \quad 3 x-4 y=7
$$

Solution: Normal vectors for the planes: $\overrightarrow{\mathrm{n}}_{1}=\langle 2,-3,5\rangle$, $\vec{n}_{2}=\langle 3,-4,0\rangle$.

Since L lies in both planes, its direction \vec{v} is orthogonal to both \vec{n}_{1} and \vec{n}_{2} :

$$
\vec{v}=\vec{n}_{1} \times \vec{n}_{2}=\langle 20,15,1\rangle .
$$

Solve the system $2 x-3 y+5 z=1,3 x-4 y=7$ to get a point on L. There are many solutions; one is ($17,11,0$).

Answer: $\quad \vec{r}(t)=\langle 17+20 t, 11+15 t, t\rangle$.

